Orthogonal Distance Fit of a Pyramid (Geodäsie/Vermessung)
Hi,
How to calculate σxyz of the pyramid apex.
I used a combined algorithm which estimates the 4 plane parameters and the apex in one pour, formulated as a Gauß-Helmert model with unknowns in the restrictions. The Octave (quick and dirty) code is shown below. The first three parameters represent the apex and its uncertainties.
-8.74767399063614 0.00221451170576236 10.2640449004265 0.0011073336551347 -0.328875210651509 0.00218131552759802 -0.210956422930505 0.00890919575377389 0.873711747603854 0.00478721066144033 -0.438320852485237 0.00927348301769577 10.9573474841569 0.0779700931038434 0.275432828201474 0.0122221368827549 0.960863952854683 0.00351702329905086 0.0296179211527723 0.00860389157635439 7.44321356781815 0.144466915923314 -0.151048445180385 0.0117018439751209 0.828459948964864 0.00695058710419911 0.539294428090744 0.0104652274965152 9.64731210096934 0.11476352555406 -0.625323330824657 0.00737061968100696 0.775035753685848 0.00594490104169702 0.091051152848087 0.00677300352475538 13.3951819449872 0.0109245236511967
kind regards
Micha
%% 4-Faces-Pyramid % % nx(i) * x(j,i) + ny(i) * y(j,i) + nz(i) * z(j,i) - d(i) = 0 % with i = 1 .. 4 % % ||n(i)|| == 1 % % and % % n(i)' * Apex -d(i) == 0 % % % @version 1.01 % @author Michael Loesler - derletztekick.com clear all close all format long g clc plane1 = [ -8.7740 10.2929 -0.2645 -8.7546 10.2701 -0.3177 -8.8042 10.2864 -0.2647 -8.7602 10.2767 -0.2908 -8.7154 10.3041 -0.2639 -8.7347 10.2841 -0.2905 -8.7470 10.2985 -0.2641 -8.8216 10.3067 -0.2113 -8.8498 10.2977 -0.2114 -8.7888 10.3102 -0.2109 -8.8108 10.2940 -0.2379 -8.7844 10.3051 -0.2378 -8.7524 10.3050 -0.2374 -8.7637 10.3184 -0.2109 -8.8621 10.3120 -0.1847 -8.8280 10.3142 -0.1843 -8.7998 10.3231 -0.1842 -8.7734 10.3298 -0.1841 -8.7055 10.3322 -0.2103 -8.7251 10.3155 -0.2372 -8.6989 10.3245 -0.2371 -8.7321 10.3238 -0.2106 -8.6751 10.3405 -0.2103 -8.7436 10.3375 -0.1838 -8.7142 10.3427 -0.1837 -8.6877 10.3555 -0.1837 -8.6584 10.3609 -0.1835 ]; plane2 = [ -8.9011 10.3140 -0.4292 -8.8979 10.3103 -0.4021 -8.8503 10.2982 -0.4009 -8.8934 10.3051 -0.3204 -8.8922 10.3037 -0.3744 -8.8957 10.3077 -0.3475 -8.8903 10.3014 -0.2660 -8.8403 10.2866 -0.3192 -8.8439 10.2908 -0.3733 -8.8447 10.2917 -0.3463 -8.7987 10.2798 -0.3454 -8.7972 10.2781 -0.3185 -8.8420 10.2886 -0.2651 -8.8414 10.2879 -0.2920 -8.7972 10.2781 -0.2914 -8.8914 10.3028 -0.2118 -8.8913 10.3026 -0.2390 -8.8911 10.3024 -0.1848 -8.8431 10.2899 -0.2381 ]; plane3 = [ -8.7668 10.3218 -0.4267 -8.8744 10.3263 -0.4560 -8.7807 10.3382 -0.4543 -8.8118 10.3373 -0.4551 -8.8147 10.2984 -0.4003 -8.8596 10.3091 -0.4282 -8.8263 10.3121 -0.4275 -8.7545 10.3073 -0.3992 -8.7821 10.3024 -0.3996 -8.7932 10.3154 -0.4269 -8.7576 10.2737 -0.3445 -8.8032 10.2850 -0.3726 -8.7698 10.2880 -0.3719 -8.6894 10.3576 -0.4529 -8.7478 10.3424 -0.4536 -8.7209 10.3506 -0.4534 -8.7354 10.3278 -0.4262 -8.7101 10.3377 -0.4259 -8.7437 10.2946 -0.3717 ]; plane4 = [ -8.6503 10.3510 -0.3985 -8.6315 10.3681 -0.3985 -8.6334 10.3705 -0.4520 -8.6954 10.3203 -0.3985 -8.6694 10.3337 -0.3982 -8.6744 10.3396 -0.4252 -8.6550 10.3567 -0.4252 -8.6332 10.3702 -0.4251 -8.7059 10.2929 -0.3174 -8.7298 10.2782 -0.3441 -8.7117 10.2996 -0.3713 -8.7069 10.2940 -0.3442 -8.6881 10.3115 -0.3442 -8.7283 10.2765 -0.3173 -8.6858 10.3089 -0.3174 -8.6907 10.3147 -0.3712 -8.6435 10.3430 -0.3173 -8.6684 10.3324 -0.3711 -8.6662 10.3298 -0.3440 -8.6463 10.3463 -0.3711 -8.6288 10.3650 -0.3712 -8.6454 10.3453 -0.3443 -8.6273 10.3631 -0.3443 -8.7063 10.2933 -0.2904 -8.6863 10.3095 -0.2636 -8.6875 10.3109 -0.2905 -8.6632 10.3263 -0.2636 -8.6636 10.3268 -0.2903 -8.6423 10.3415 -0.2903 -8.6206 10.3550 -0.2634 -8.6220 10.3567 -0.3174 -8.6235 10.3586 -0.2903 -8.6664 10.3301 -0.2369 -8.6401 10.3389 -0.2366 -8.6232 10.3582 -0.2099 -8.6199 10.3542 -0.2366 ]; % A-priori Coordinates of Apex xapex = -8.7; yapex = 10.3; zapex = -0.3; % Plane Parameters of face 1...4 nx1 = -0.211; ny1 = 0.875; nz1 = -0.436; d1 = 10.971; nx2 = 0.280; ny2 = 0.959; nz2 = 0.029; d2 = 7.389; nx3 = -0.152; ny3 = 0.831; nz3 = 0.536; d3 = 9.678; nx4 = -0.627; ny4 = 0.774; nz4 = 0.091; d4 = 13.396; % Vector of unknows X0 = [xapex, yapex, zapex,... nx1, ny1, nz1, d1,... nx2, ny2, nz2, d2,... nx3, ny3, nz3, d3,... nx4, ny4, nz4, d4]'; Qll = eye(3*(length(plane1)+length(plane2)+length(plane3)+length(plane4))); plane10 = plane1; plane20 = plane2; plane30 = plane3; plane40 = plane4; maxIteration = 200; dx = inf; v = zeros(3*(length(plane1)+length(plane2)+length(plane3)+length(plane4)),1); while (abs(max(dx)) > sqrt(eps) && maxIteration >= 0) maxIteration = maxIteration - 1; % Jacobi A = zeros(length(plane1)+length(plane2)+length(plane3)+length(plane4), length(X0)); w = zeros(size(A,1), 1); % Restriction R = zeros(8, length(X0)); r = zeros(8, 1); % Condition B = zeros(size(A,1), size(A,1)*3); A(1:length(plane1), 4:7) = [plane1 -ones(length(plane1), 1)]; A(length(plane1)+1:length(plane1)+length(plane2), 8:11) = [plane2 -ones(length(plane2), 1)]; A(length(plane1)+length(plane2)+1:length(plane1)+length(plane2)+length(plane3), 12:15) = [plane3 -ones(length(plane3), 1)]; A(length(plane1)+length(plane2)+length(plane3)+1:length(plane1)+length(plane2)+length(plane3)+length(plane4), 16:19) = [plane4 -ones(length(plane4), 1)]; w(1:length(plane1), 1) = plane1 * X0(4:6) - X0(7); w(length(plane1)+1:length(plane1)+length(plane2), 1) = plane2 * X0(8:10) - X0(11); w(length(plane1)+length(plane2)+1:length(plane1)+length(plane2)+length(plane3), 1) = plane3 * X0(12:14) - X0(15); w(length(plane1)+length(plane2)+length(plane3)+1:length(plane1)+length(plane2)+length(plane3)+length(plane4), 1) = plane4 * X0(16:18) - X0(19); B(1:length(plane1), 1:3*length(plane1)) = kron(eye(length(plane1)), X0(4:6)'); B(length(plane1)+1:length(plane1)+length(plane2), 3*length(plane1)+1:3*(length(plane1)+length(plane2))) = kron(eye(length(plane2)), X0(8:10)'); B(length(plane1)+length(plane2)+1:length(plane1)+length(plane2)+length(plane3), 3*(length(plane1)+length(plane2))+1:3*(length(plane1)+length(plane2)+length(plane3))) = kron(eye(length(plane3)), X0(12:14)'); B(length(plane1)+length(plane2)+length(plane3)+1:length(plane1)+length(plane2)+length(plane3)+length(plane4), 3*(length(plane1)+length(plane2)+length(plane3))+1:3*(length(plane1)+length(plane2)+length(plane3)+length(plane4))) = kron(eye(length(plane4)), X0(16:18)'); R(1, 4:6) = 2.*X0(4:6); R(2, 8:10) = 2.*X0(8:10); R(3, 12:14) = 2.*X0(12:14); R(4, 16:18) = 2.*X0(16:18); R(5, [1:3, 4:7]) = [X0(4:6)' X0(1:3)' -1]; R(6, [1:3, 8:11]) = [X0(8:10)' X0(1:3)' -1]; R(7, [1:3,12:15]) = [X0(12:14)' X0(1:3)' -1]; R(8, [1:3,16:19]) = [X0(16:18)' X0(1:3)' -1]; r(1,1) = X0(4:6)' *X0(4:6) - 1; r(2,1) = X0(8:10)' *X0(8:10) - 1; r(3,1) = X0(12:14)'*X0(12:14) - 1; r(4,1) = X0(16:18)'*X0(16:18) - 1; r(5,1) = X0(4:6)' *X0(1:3) - X0(7); r(6,1) = X0(8:10)' *X0(1:3) - X0(11); r(7,1) = X0(12:14)'*X0(1:3) - X0(15); r(8,1) = X0(16:18)'*X0(1:3) - X0(19); w = -B*v + w; N = [ B*Qll*B' A zeros(size(A,1),size(R,1)) A' zeros(size(A,2)) R' zeros(size(R,1), size(A,1)) R zeros(size(R,1),size(R,1)) ]; invN = -inv(N); kxk = invN * [w; zeros(size(X0,1),1); r]; k1 = kxk(1:1:size(A,1)); dx = kxk(size(k1,1)+1:1:size(X0,1)+size(k1,1)); k2 = kxk(size(k1,1)+size(dx,1)+1:1:size(kxk,1)); X0 = X0+dx; v = Qll*B'*k1; for i=1:length(plane1) plane1(i, :) = plane10(i, :) + v(3*(i-1)+1:3*(i-1)+3)'; end for i=1:length(plane2) plane2(i, :) = plane20(i, :) + v(3*length(plane1)+3*(i-1)+1 : 3*length(plane1)+3*(i-1)+3)'; end for i=1:length(plane3) plane3(i, :) = plane30(i, :) + v(3*(length(plane1)+length(plane2))+3*(i-1)+1 : 3*(length(plane1)+length(plane2))+3*(i-1)+3)'; end for i=1:length(plane4) plane4(i, :) = plane40(i, :) + v(3*(length(plane1)+length(plane2)+length(plane3))+3*(i-1)+1 : 3*(length(plane1)+length(plane2)+length(plane3))+3*(i-1)+3)'; end end omega = v'*inv(Qll)*v + 2*k1'*(B*v+A*dx+w) + 2*k2'*(R*dx+r); Qxx = invN(size(A,1)+1:1:size(A,1)+size(X0,1), size(A,1)+1:1:size(A,1)+size(X0,1)); sigma = omega / (size(A,1)+size(R,1)-size(A,2)); Qxx = sigma .* Qxx; disp([X0 sqrt(diag(Qxx))]); plot3(plane1(:,1), plane1(:,2), plane1(:,3),'.b',... plane2(:,1), plane2(:,2), plane2(:,3),'.r',... plane3(:,1), plane3(:,2), plane3(:,3),'.g',... plane4(:,1), plane4(:,2), plane4(:,3),'.m',... X0(1), X0(2), X0(3), '*c');
--
applied-geodesy.org - OpenSource Least-Squares Adjustment Software for Geodetic Sciences
gesamter Thread:
- Abbreviations in JAG3D's FormFittingToolbox -
Balata,
29.11.2012, 18:58
- Abbreviations in JAG3D's FormFittingToolbox -
MichaeL,
29.11.2012, 19:57
- Abbreviations in JAG3D's FormFittingToolbox -
Balata,
30.11.2012, 19:29
- Abbreviations in JAG3D's FormFittingToolbox -
MichaeL,
30.11.2012, 23:04
- Abbreviations in JAG3D's FormFittingToolbox -
Balata,
01.12.2012, 04:06
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
01.12.2012, 14:19
- Orthogonal Distance Fit of a Pyramid -
Balata,
02.12.2012, 02:07
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
02.12.2012, 12:42
- Orthogonal Distance Fit of a Pyramid -
Balata,
03.12.2012, 00:51
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
03.12.2012, 16:12
- Orthogonal Distance Fit of a Pyramid -
Balata,
04.12.2012, 00:13
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
04.12.2012, 06:59
- Orthogonal Distance Fit of a Pyramid -
Balata,
05.12.2012, 03:47
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
06.12.2012, 14:21
- Orthogonal Distance Fit of a Pyramid -
Balata,
10.12.2012, 02:57
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
10.12.2012, 18:31
- Orthogonal Distance Fit of a Pyramid -
Balata,
12.12.2012, 00:03
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
12.12.2012, 08:07
- Orthogonal Distance Fit of a Pyramid -
Balata,
10.04.2013, 03:18
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
10.04.2013, 08:13
- Orthogonal Distance Fit of a Pyramid -
Balata,
13.04.2013, 02:28
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
13.04.2013, 10:41
- Orthogonal Distance Fit of a Pyramid -
Balata,
15.04.2013, 00:57
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
16.04.2013, 21:19
- Orthogonal Distance Fit of a Pyramid -
Balata,
22.06.2013, 10:55
- Orthogonal Distance Fit of a Pyramid - MichaeL, 22.06.2013, 11:15
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
26.06.2013, 08:15
- Orthogonal Distance Fit of a Pyramid - Balata, 27.06.2013, 00:02
- Orthogonal Distance Fit of a Pyramid -
Balata,
22.06.2013, 10:55
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
16.04.2013, 21:19
- Orthogonal Distance Fit of a Pyramid -
Balata,
15.04.2013, 00:57
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
13.04.2013, 10:41
- Orthogonal Distance Fit of a Pyramid -
Balata,
13.04.2013, 02:28
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
10.04.2013, 08:13
- Orthogonal Distance Fit of a Pyramid -
Balata,
10.04.2013, 03:18
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
12.12.2012, 08:07
- Orthogonal Distance Fit of a Pyramid -
Balata,
12.12.2012, 00:03
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
10.12.2012, 18:31
- Orthogonal Distance Fit of a Pyramid -
Balata,
10.12.2012, 02:57
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
06.12.2012, 14:21
- Orthogonal Distance Fit of a Pyramid -
Balata,
05.12.2012, 03:47
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
04.12.2012, 06:59
- Orthogonal Distance Fit of a Pyramid -
Balata,
04.12.2012, 00:13
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
03.12.2012, 16:12
- Orthogonal Distance Fit of a Pyramid -
Balata,
03.12.2012, 00:51
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
02.12.2012, 12:42
- Orthogonal Distance Fit of a Pyramid - Balata, 02.12.2012, 02:54
- Orthogonal Distance Fit of a Pyramid -
Balata,
02.12.2012, 02:07
- Orthogonal Distance Fit of a Pyramid -
MichaeL,
01.12.2012, 14:19
- Abbreviations in JAG3D's FormFittingToolbox -
Balata,
01.12.2012, 04:06
- Abbreviations in JAG3D's FormFittingToolbox -
MichaeL,
30.11.2012, 23:04
- Abbreviations in JAG3D's FormFittingToolbox -
Balata,
30.11.2012, 19:29
- Abbreviations in JAG3D's FormFittingToolbox -
MichaeL,
29.11.2012, 19:57